
This project has received funding from the European Union’s Seventh Framework Programme for research, technological development
and demonstration under grant agreement no 318201

WP4 – Mobility-related Data as a Service

D4.5.2: Media Data Streams and Data Prefetching
Prototype II

Deliverable Lead: ASC

Contributing Partners: IBM, TUV

Delivery Date: 21.04.2015

Dissemination Level: Public

Version 1.0

This deliverable describes the work carried out during the
development of the final prototype of the Media Data
Streams and Data Prefetching component of the SIMPLI-
CITY platform. It specifies the scope of this final version
and the degree of fulfilment of the requirements to be
covered by the component. It specifies how to install and
execute the different subcomponents implemented.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
2 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

Document Status

Deliverable Lead Kristof Kipp, ASC

Internal Reviewer 1 Daniel Burgstahler, TUDA

Internal Reviewer 2 Vadim Petrenko, TIE

Type Deliverable

Work Package WP4: Mobility-related Data as a Service

ID D4.5.2: Media Data Streams and Data Prefetching Prototype II

Due Date 31.03.2015

Delivery Date 21.04.2015

Status For Approval

Document History

Contributions

V1.0, Kristof Kipp, ASC, 31.03.2015, Incorporated internal reviews and added the
prototype zip archive

V0.7, Stefan Schulte, TUV, 08.04.2015, Incorporated internal reviews

V0.6, Kristof Kipp, ASC, 31.03.2015, Incorporated internal reviews

V0.5, Kristof Kipp, ASC, 30.03.2015, Formatting and final changes

V0.4, Stefan Schulte, TUV, 30.03.2015, Added paragraph to the summary

V0.3, Xavier Cases Camats, WORLD, 27.03.2015, Added paragraph to the
summary.

V0.3, Xavier Cases Camats, WORLD, 24.03.2015, Added information about the
Media Data Streaming API

V0.2, Stefan Schulte, TUV, 16.03.2015, Added Prefetching Algorithms Sections

V0.1, Kristof Kipp, ASC, 22.02.2015, Added document structure.

Final Version April 21st, 2015

Note

This deliverable is subject to final acceptance by the European Commission.

Disclaimer

The views represented in this document only reflect the views of the authors and not the
views of the European Union. The European Union is not liable for any use that may be
made of the information contained in this document.

Furthermore, the information is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose. The user of the information uses it at its
sole risk and liability.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
3 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

Project Partners

Vienna University of Technology (Coordinator),
Austria

Ascora GmbH, Germany

TIE Nederland B.V., The Netherlands

Technische Universität Darmstadt, Germany

IBM Research – Ireland
Smarter Cities Technology Centre

Forschungsgesellschaft Mobilität, Austria

Talkamatic AB, Sweden

Atos Worldline, Spain

Centro Ricerche FIAT, Italy

SRM – Reti e Mobilità, Italy

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
4 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

Executive Summary

This deliverable describes the work which was carried out during the development of the
final prototype of the SIMPLI-CITY Media Data Streams and Data Prefetching component.
For this, this document starts with introducing the Media Data Streams and Data
Prefetching functionalities and describing the scope of the final prototype.

Afterwards, the degree of fulfilment of each requirement to be covered by the component
and specified in the Requirements Analysis Report (D2.3) is described.

The current version of the Media Data Streams and Data Prefetching component contains
the methods to transcode media files in different file sizes (which will provide different
levels of audio quality to the customer) and offer them to consumers via a RESTful
interface and native Java APIs with the Media Playback API and the Data Prefetching API.
The Prefetching Algorithms provide the means to decide which data services are to be
invoked at which time of a journey (e.g., before a trip or while being on the road). The data
will be stored while making use of the Prefetch Proxy, which stores requests and their
respective responses.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
5 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

Table of Contents

1 Introduction .. 6
1.1 SIMPLI-CITY Project Overview ... 6
1.2 Deliverable Purpose, Scope and Context .. 7
1.3 Document Status and Target Audience ... 7
1.4 Abbreviations and Glossary ... 7

1.5 Document Structure ... 7
2 Prototype Scope and Requirements Coverage .. 8

2.1 Media Data Streams and Data Prefetching – General Information 8
2.2 Scope of the Final Prototype ... 9

2.2.1 Media Data Analysis .. 9

2.2.2 Media Data Transcoding .. 10
2.2.3 Data Access Relay ... 10
2.2.4 Data Prefetching and Streaming Service ... 10

2.2.5 Data Prefetching API and Media Playback API .. 11
2.3 Technical Decisions ... 11

2.3.1 Media Streaming Technology .. 11

2.3.2 Prefetching Algorithms ... 12
2.4 Covered Requirements .. 14

3 Preparations .. 16

3.1 Server Side .. 16
3.2 Client Side ... 17

3.2.1 Prefetch Proxy ... 17
4 Installation (Deployment) ... 18

4.1 Server Side .. 18
4.1.1 Media Data Streaming ... 18

4.1.2 nginx .. 18
4.2 Client Side ... 19

5 Execution and Usage of the Software .. 20

5.1 Analysis and Transcoding ... 20

5.2 Streaming REST API ... 20
5.2.1 getStreamList ... 20
5.2.2 setBandwidth/:id/:kbps ... 20
5.2.3 play/:id and stop/:id .. 21

5.3 Streaming Website .. 21

5.4 Prefetch Proxy ... 22

6 Summary ... 23

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
6 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

1 Introduction

SIMPLI-CITY – The Road User Information System of the Future – is a project funded by
the Seventh Framework Programme of the European Commission under Grant Agreement
No. 318201. It provides the technological foundation for bringing the “App Revolution” to
road users by facilitating data integration, service development, and end user interaction.

Within this document, the final prototype of the Media Data Streams and Data Prefetching
component will be presented. The document accompanies the corresponding software
prototype, which is the main content of the deliverable.

1.1 SIMPLI-CITY Project Overview

Analogously to the “App Revolution”, SIMPLI-CITY adds a “software layer” to the
hardware-driven “product” mobility. SIMPLI-CITY will take advantage of the great success
of mobile apps that are currently being provided for systems such as Android, iOS, or
Windows Phone. These apps have created new opportunities and even business models
by making it possible for developers to produce new apps on top of the mobile device
infrastructure. Many of the most advanced and innovative apps have been developed by
players formerly not involved in the mobile software market. Hence, SIMPLI-CITY will
support third party developers to efficiently realise and sell their mobility-related service
and app ideas by a range of methods and tools, including the Mobility Services and App
Marketplaces.

In order to foster the wide usage of those services, a holistic framework is needed which
structures and bundles potential services that could deliver data from various sources to
road user information systems. SIMPLI-CITY will provide such a framework by facilitating
the following main project results:

 Mobility Services Framework: A next-generation European Wide Service Platform
(EWSP) allowing the creation of mobility-related services as well as the creation of
corresponding apps. This will enable third party providers to produce a wide range
of interoperable, value-added services, and apps for drivers and other road users.

 Mobility-related Data as a Service: The integration of various, heterogeneous data
sources like sensors, cooperative systems, telematics, open data repositories,
people-centric sensing, and media data streams, which can be modeled, accessed,
and integrated in a unified way.

 Personal Mobility Assistant: An end user assistant that allows road users to make
use of the information provided by apps and to interact with them in a non-
distracting way – based on a speech recognition approach. New apps can be
integrated into the Personal Mobility Assistant in order to extend its functionalities
for individual needs.

To achieve its goals, SIMPLI-CITY conducts original research and applies technologies
from the fields of Ubiquitous Computing, Big Data, Media Streaming, the Semantic Web,
the Internet of Things, the Internet of Services, and Human-Computer Interaction. For
more information, please refer to the project website at http://www.simpli-city.eu.

http://www.simpli-city.eu/

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
7 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

1.2 Deliverable Purpose, Scope and Context

The purpose of this document is to provide the means to use the final prototype of the
Media Data Streams and Data Prefetching component and exploit its functionalities. For
this, the scope and requirements of the component, the requirements and preparations for
users, and an installation and usage guide are provided.

The final Media Data Streams and Data Prefetching prototype is the outcome of the
discussions and implementation work done in project months 19 to 30. It provides the final
implementation of the functionalities as discussed within SIMPLI-CITY deliverables D3.2.1
(Functional Specification), and D3.2.2 (Technical Specification).

1.3 Document Status and Target Audience

This document is listed in the Description of Work (DoW) as “Public”. It provides the
means to exploit the functionalities of the SIMPLI-CITY Media Data Streams and Data
Prefetching component as defined in deliverable D3.2.2 (Technical Specification).

While the document primarily is aimed at the project partners, this public deliverable can
also be useful for the wider scientific and industrial community. This includes other publicly
funded projects, which may be interested in collaboration activities.

1.4 Abbreviations and Glossary

A definition of common terms and roles related to the realization of SIMPLI-CITY as well
as a list of abbreviations is available in the supplementary document “Supplement:
Abbreviations and Glossary”, which is provided in addition to this deliverable.

Further information can be found at http://www.simpli-city.eu.

1.5 Document Structure

This deliverable is broken down into the following sections:

Section 1 provides an introduction for this deliverable including a general overview of the
project and outlines the purpose, scope, context, status, and target audience of this
deliverable.

Section 2 provides an overview of the scope and relationship of the prototype, showing
where the Media Data Streams and Data Prefetching component fits into the overall
SIMPLI-CITY software framework and the outcome of the final prototype. Furthermore, an
assessment of the requirements covered by this prototype is given. Section 2 additionally
provides a description of technical changes and decisions that have been made after the
first prototype.

Section 3 presents the requirements and preparations to be done by software developers
if they want to make use of the final prototype of the Media Data Streams and Data
Prefetching component.

Section 4 states information about the installation and deployment of the provided software
package.

Section 5 describes how software developers can use the provided functionalities.

Section 6 provides a summary of the document and the final comments for Task 4.5.

http://www.simpli-city.eu/

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
8 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

2 Prototype Scope and Requirements Coverage

In this section the scope of the final prototype and its coverage of the requirements defined
in deliverable D2.3 are discussed.

2.1 Media Data Streams and Data Prefetching – General

Information

The Media Data Streams and Data Prefetching realizes the means for media handling in
terms of media data streaming and media prefetching (e.g., for music streaming).
Secondly, this component provides service prefetching functionalities (for pre-invocation of
data services and backend services).

Media streaming and media data prefetching may be used to create apps that support the
playback of music or other media information. By nature, the consumption of media is
sensitive to interruptions: Even a connectivity loss of a few seconds in the middle of a song
the user is listening to will give the user a negative experience. For this purpose, the Media
Data Streams and Data Prefetching component will integrate a media buffering solution by
prefetching relevant data in a local buffer.

Data prefetching takes into account which data will be most likely needed by the user in
the future and might be prone to connectivity losses. Based on this information, data
services are pre-invoked and the results are stored in a cache. Consequently, future
service invocations can be “re-directed” to the cache – instead of invoking the actual
service, data from the cache is used. Of course, this is only feasible in particular situations,
as will be explained in Section 2.3.2.

Figure 1 shows the location of the Media Data Streams and Data Prefetching in the
SIMPLI-CITY Global Architecture. The Media Streams API (as shown in Figure 2)
subcomponent of T4.5 is not separately depicted in the Figure, because it is a special case
of prediction fetching the SIMPLI-CITY Personal Mobility Assistant (PMA) makes use of.
For the full Global Architecture, refer to deliverable D3.1.

Figure 1: Location of the Media Data Streams and Data Prefetching Component in the
SIMPLI-CITY Global Architecture

Vehicle & PMA (Personal Mobility Assistant)

SIMPLI-CITY Server Side

SIMPLI-CITY App

Lo
cal K

ey
Sto

rage

Application Runtime
Environment

Apps

Data
Prefet-
ching

Context-based Service
Personalization

Data Prefetching Logic

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
9 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

2.2 Scope of the Final Prototype

Figure 2: Scope of the Final Prototype of the Media Data Streams and
Data Prefetching Component

Figure 2 depicts the status of development of the final prototype of the Media Data
Streams and Data Prefetching component, showing the subcomponents that are covered
within this final prototype.

The status of the implementation is shown using the following colour codes:

 Green: Fully implemented.

 Orange: Partially implemented.

 White: No implementation so far.

In the following subsections, the scope and status of the single subcomponents will be
discussed in more detail. For the Functional Specification and Technical Specification of
these subcomponents, refer to SIMPLI-CITY deliverables D3.2.1 and D3.2.2, respectively.

2.2.1 Media Data Analysis

The Media Data Analysis is part of the media streaming functionality. A media data stream
invoked by the Media Data Transcoding can use this component to analyse the media
data. The Media Data Analysis can identify music and speech from an audio data stream
and handle them in different ways. The adaptive normalizer can detect the base quality of
a media stream and create copies of the stream with different encoding options (e.g.,
lower bitrate to create smaller files). With this information, the component is able to make

Data

Access

Relay

Media Data Analysis

Media Data Transcoding

 Data Prefetching and

 Streaming Service

s
e

rv
e

r-s
id

e
c
lie

n
t-s

id
e

Files

R R

R

R

Application

Runtime

Environment

Local Prefetching

Store (SQLite)

R

Data Pre-

fetching API

Media

Playback API

Data Prefetching Gateway

Data

Streams

Service

Runtime

Environment

R

Context-based

Service

Personalisation

R

Cloud-based Information
Infrastructure

Data

Processing

Prefetching

Algorithms

R

R

Groupcache

R

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
10 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

the best choice of encoding for the current bandwidth of the PMA. As decided in
Section 5.4.3 in deliverable D3.2.1, this subcomponent was implemented in the
programming language Go and makes use of the ffmpeg1/libav2 toolkit to analyse the
multimedia resource.

While developing the final prototype, the standard library of the Ubuntu Linux distribution
has changed and ffmpeg was replaced by libav, therefore a change of commands were
made according to the recommendations of the Ubuntu development team. This has only
a small influence on the installation and deployment of the T4.5 component.

2.2.2 Media Data Transcoding

In general, media streams require a very high data bandwidth to encode the media data,
therefore the Media Data Transcoding component has to cope with a huge data
throughput. The Media Data Transcoding transforms the media stream into another
encoding (probably with a lower bitrate) if monitoring, continuously performed by the Media
Data Analysis, suggests that it will help to guarantee a continuous playback on the device
(here: the PMA). To improve performance, this subcomponent calls the Data Access Relay
before it starts transcoding and provides the transcoded multimedia data to the Data
Access Relay. The Media Data Transcoding subcomponent is configured to cache its data
in the Groupcache subcomponent of the Data Access Relay. Thus, if more than one user
consumes the same media resource in a similar network environment, the media resource
is transcoded by the Media Data Transcoding only once. As has been decided in
Section 5.4.3 in deliverable D3.2.1, this subcomponent was developed in the Go
programming language and the Go Media Framework is used for the transcoding.

2.2.3 Data Access Relay

The Data Access Relay provides caching functionalities to the media-streaming
infrastructure of the server-side Media Data Streams and Data Prefetching component. If
consuming multimedia data, data throughput peaks on some multimedia resources are
common. It is anticipated that several users use the same multimedia resources – this fact
is exploited in order to reduce redundant work for the Data Access Relay. The Data
Access Relay is applied to minimize the traffic between the Media Data Streams and Data
Prefetching Logic component and external multimedia resources and reduces the load
from the Media Data Transcoding subcomponent. Moreover, already transcoded media
data is cached in the Data Access Relay to reduce the load on the Media Data
Transcoding subcomponent.

2.2.4 Data Prefetching and Streaming Service

While developing the Data Prefetching and Streaming Service several major technical
design decisions (which were not addressed within D3.2.2) had to be made. The access to
the media files needed to be handled in a fast manner due to a predicted access rate of
more than a thousand requests per second. This relatively high number is given by the fact
that media files are stored in chunks, which are accessed and streamed on demand.

The Data Prefetching subcomponent of SIMPLI-CITY aims at mitigating the problem that
mobile implementations, such as the PMA, are typically subjected to network fluctuations

1 https://www.ffmpeg.org/
2 https://libav.org/

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
11 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

or intermittent downtimes. This can be illustrated using an example of a service consumer
(here: the PMA) driving through a mountain tunnel or simply in an area with bad cellular
coverage. Data Prefetching itself is a type of precaching, i.e., data is put into a cache
before it is actually needed. To achieve this within SIMPLI-CITY, a Prefetching Algorithm
needs to take into account the future context of the PMA and also the data needs of the
user. Based on this information, the algorithm is able to decide which data to prefetch at
which point of time in order to enhance the user experience. Notably, prefetching should
be possible for all kinds of data types, but is naturally especially critical for streaming data
for providing uninterrupted playback.

2.2.5 Data Prefetching API and Media Playback API

These components (Data Prefetching API and Media Playback API) are not concerned in
this deliverable, because they highly depend to the App implementations of the SIMPLI-
CITY Application Runtime Environment, which is not yet finalized at the time of this
deliverable. The work on these subcomponents will be intensified while implementing the
real world use cases for WP7 and WP8.

2.3 Technical Decisions

This section discusses important technical decisions that had to be made after the first
prototype. These decisions include the storage of the media files that will be streamed to
the customers based on different parameters that will be explained in the next sections.

2.3.1 Media Streaming Technology

The technology to stream the audio data to the client device (the PMA) is the most
important factor for the Media Data Streams component. It needs to support multi-channel
streams, which are not limited to a single song, but offer the means to dynamically open
new channels for listeners on the fly. This requirement creates a 1:n-relationship between
the service and the possible large number of clients, which is an important requirement for
successful realization of this component.

A technology for media streaming needed to be chosen – as there are many different
methods of streaming data to a mobile device. Almost all of the common technologies offer
static media streams that use a single channel for receiving and transmitting of data. As
stated before, media streaming needs to support multi-channel streams, which is not
foreseen in existing components. Therefore the only possible solution that is currently
available – apart from pure connections (e.g., TCP or UDP Sockets) – is an RTMP (Real
Time Messaging Protocol) server. RTMP supports dynamic channels that are opened as
soon as a transmitter writes data into it.

As the RTMP protocol makes use of a centralized server and is just the backend for
streams, the Media Data Streams subcomponent needs to dynamically open a channel
and write media data into the created channel. This channel creation and writing is done
with a content provider, which is usually an ffmpeg/libav process. The content provider
process is controlled by the Media Data Streams service.

 Streaming of Media Data

Upon opening a channel there are two possible ways of writing the chunk data to the
opened channel, given the length of a chunk is 10 seconds:

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
12 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

a) Write every chunk on its own, meaning having to open a new RTMP connection
every new chunk.

b) Have a FIFO (First In, First Out) pipe which is used as the source of the stream and
constantly write the chunk data into the pipe.

A FIFO pipe is an organization method in operating systems and programming languages,
where a dynamic file is created that has data providers (methods and processes that write
data into the pipe) and consumers (which read the data) – therefore possibly creating
endless file streams.

The first method constantly opens new streams with the same name, having the data
stream consumer to reopen the connection every chunk length (here: 10 seconds) – which
creates a massive overhead. This overhead may not be readable in time as the connection
on the PMA may be too low to keep up with the needed bandwidth.

Using a FIFO pipe, the content provider (the Media Data Streams component) can open a
dynamic channel using this pipe as an input and the RTMP server channel as the output
and therefore dynamically adjust the quality of the song by writing the data directly into the
pipe without having to re-establish the connection on every quality change or new chunk,
which is done by having multiple bitrate-versions of a song ready for writing. The PMA
keeps track of the currently available bandwidth, which is send to the Data Prefetching and
Streaming Service via the Media Playback API. The Data Prefetching and Streaming
Service then chooses the best suiting bitrate for the available bandwidth and uses the
already opened connection to send the data to the client.

2.3.2 Prefetching Algorithms

To compensate for connection losses or bad connection quality, it is imperative to prefetch
data and buffer it locally. Prefetching is the technique of querying or gathering any kind of
data or service functionality before the moment it is actually needed or used. It is related to
caching, not only since caching and prefetching are often combined, but also since the
prefetched data have to be stored in caches or similar modules. In SIMPLI-CITY, data is
consumed using the notion of services. Hence, in the following it is assumed that different
data services are available, which could be prefetched, i.e., a service could be invoked
before the actual time the service response is needed. The result of the service response
is stored in a cache and the result is used once the actual service invocation should take
place.

It should be noted that the modular structure of the SIMPLI-CITY Media Data Streams and
Data Streaming subcomponent allows the replacement of the underlying Prefetching
Algorithms. During the course of SIMPLI-CITY, a number of algorithms have been
implemented. For more details of the Prefetching Algorithms, please refer to [HSH+14]. In
general, all data services, which are consumed through the OSGi-based SIMPLI-CITY
Service Runtime Environment, may be prefetched.

 Data Types

One prerequisite for data prefetching is the definition of a taxonomy of data types, since it
does not make sense to prefetch any kind of data at any point of time. Hence, for the
purposes of prefetching, data is categorized using the following categories:

 Importance (high/medium/low): Signifies the importance of the particular data
service. Since different users may attribute different levels of importance to the

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
13 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

same data service, this category can be customized to cater for the individual user
needs. For instance, some users may want to download traffic information updates
in any context using the full available bandwidth for this, while other users do not
necessarily appoint such a high importance to this kind of information.

 Time-Criticality (high/medium/low): Describes the time criticality of the particular
data service. For instance, a traffic update data service is highly time-critical, since
the data is out-dated very soon. In contrast, a media streaming data service may
only feature a medium level of time-criticality.

 Access Pattern (e.g., streaming, push /poll, on demand, recurrent, polling):
Represents the access patterns for a particular data service. As mentioned above,
streaming data services are the focus of this SIMPLI-CITY component, but per se,
other access patterns are also supported.

 (Pre-)Fetching Strategy (timely updates, pre-compute, pre-load for route, pre-load &
cache, postpone if required): Describes different prefetching strategies that could be
chosen based on the individual needs of a user.

As it can be seen, the different categories may lead to conflicting prefetching decisions.
For example, a traffic update data service may be categorized as highly important
(indicating a need for prefetching), but is also time-critical (indicating that there is no
improvement in user experience if the service is prefetched). To find an optimal solution
taking into account the different categories is therefore crucial.

 Prefetching Scheduling Strategies

It is assumed that a data service is available in a given context: (i) Either if the network
quality is sufficient to make a service invocation at the time it is required or (ii) the service
request had been prefetched before. The goal of this Prefetching Algorithm is to prefetch
all data services whenever requested. This implies that all requests that are scheduled for
a time where the network is unavailable (or the network quality is insufficient) need to be
prefetched. As a further, soft constraint for optimizing the prefetching scheduling, more
time-critical data services are requested at the latest possible time. Also, precedence is
given to more important data services. Two particular prefetching strategies, described
below, have been implemented.

The basic type of prefetching is to periodically invoke the target data service in fixed or
predefined time intervals (Periodic Prefetching Strategy). Periodic prefetching is not well-
suited for services with high time-criticality, because prefetching may be scheduled too
early (i.e., could be scheduled closer to the time when the result is actually needed).
Moreover, this strategy is sub-optimal with respect to network usage, since it may perform
unnecessary prefetch invocations (i.e., results which are never used). Yet, the strategy can
be applied when the context evolution is not known in advance, i.e., there is no information
about how the context of the user or the device are going to evolve in the future. This is
the case if, e.g., the planned route of the vehicle is not available.

On the other hand, taking the context of the user or device into account will usually lead to
more accurate results (Context-Aware Prefetching Strategy). With context-aware
prefetching, it is necessary to know in advance the evolution of the user context (or at least
the relevant portion of it). The future context information is used to reveal upcoming
problems in connectivity and allows prefetching in a timely manner. Consequently, this
leads to less requests and a higher degree of freshness of the prefetched data. Moreover,
this strategy allows creating context-specific prefetching requests.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
14 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

2.4 Covered Requirements

This section describes the degree of fulfilment of the requirements to be covered by the
Media Data Streams and Data Prefetching and specified in the Requirements Analysis
deliverable (D2.3) and the Functional Specification (D3.2.1).

Table 6: Requirements Related the Media Data Streams and Data Prefetching Component
and their Degree of Fulfilment

Requirement Degree of Fulfilment Comment

Must Have Requirements

U50: Prefetching of media data
+ Offline access

100%

The basis for prefetching is
done by having several bitrates
of a single media file available,
the division of a media file in
chunks completely done and
these can be accessed at any
time.

U113: Handling of multimedia
data

100%

Meta information analysis is
feature complete, handling and
analysing all kinds of media
files.

U90: Availability

100%

The availability of this
component is provided by the
Data Prefetching Proxy, which
is running seamlessly in the
background and the Media
Streaming subcomponent within
the scope of this prototype.

U91: Integrity

100%

Media Streams are natively
available for Android based
systems. The API is going to be
developed within the scope of
the Use Cases for better
integration into the eco-system
of the Personal Mobility
Assistant.

U92: Secure access to system

100%

Prefetched data is stored within
the mobile device and securely
available to the Prefetching
component. Media Data is not
explicitly encrypted due to the
fact that It needs to be highly
available.

U93: Third party access to the
system

100%

The Media Streams REST
service is publicly available,
while the Prefetching Proxy is
running on the PMA itself
without any open interfaces to
the public.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
15 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

Requirement Degree of Fulfilment Comment

Should Have Requirements

U51: Avoid the download of
data from 3G

100%

The Prefetch Proxy is capable
of caching data that is likely
going to be requested. Hence, it
can be avoided to download
data via 3G if this is defined in a
Prefetching Algorithm.

U52: Offline access of data
used within apps

100%

If feasible and meaningful, any
data may be downloaded prior
to its actual usage. However, as
discussed in Section 2.3.2, this
is not the case for all types of
data.

U54: Expiration of data

100%

Using the Prefetch Proxy, the
cached data is stored for a
certain amount of time and will
be deleted as soon as the data
may be irrelevant.

Could Have Requirements

U53: App recommendations

0%

Not considered in this prototype
due to budget constraints and
low importance of this
requirement.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
16 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

3 Preparations

This section provides information about what potential users (both administrators and
software developers) need to prepare in order to use the functionalities of the delivered
prototype.

3.1 Server Side

In order to deploy the Server Side part of the Media Data Streams and Data Prefetching
component, it is necessary to have a working environment for the Go programming
language3 running. This prototype was developed using Ubuntu 13.10 with Go 1.2. Making
use of Ubuntu built-in dpkg (Debian Package) and APT (Advanced Packing Tool) utilities
makes the installation of the Go programing language straightforward.

Before installing the needed packages it is recommended to update the package index of
APT. This is done in a command line window via the following command:

sudo apt-get update

To have a fully working environment available, it is required to run the following command
with a user that is eligible to use “sudo” – this installs the go programming language
runtime and a library to split the media files, which is used within the component:

sudo apt-get install golang mp3splt

Apart from the above mentioned packages there is one additional dependency for this
prototype that needs to be installed. The commands are avprobe and avconv, which are
part of the libav package. Despite choosing ffmpeg for the conversion and analysis in
deliverable D3.2.2, libav replaced ffmpeg as the standard library in Ubuntu 12.04 and is
therefore used in this prototype. libav is installed via:

sudo apt-get install libav libav-tools

To handle the RTMP requests and responses, the server needs to run a service that
integrates into the process-line of the Media Streaming component. For convenience and
the reason of being free software, the web server nginx, with a special RTMP server
module, has been chosen. To install the respective service and the module the server
must be prepared by installing the following packages that nginx lists as dependencies.

sudo apt-get install build-essential libpcre3 libpcre3-dev libssl-dev

Inside the home directory (cd ~), the nginx source code needs to be downloaded:

wget http://nginx.org/download/nginx-1.7.10.tar.gz

As of this writing, the latest stable version of nginx is 1.7.10.

The RTMP module for nginx needs to be downloaded into the same directory as the nginx
archive:

wget https://github.com/arut/nginx-rtmp-module/archive/master.zip

Both archives (the nginx service and the RTMP module) need to be unpacked. The
following listing explains how to unpack the archives and enter the nginx directory:

3 http://golang.org/

http://golang.org/

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
17 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

tar -zxvf nginx-1.7.7.tar.gz

unzip master.zip

cd nginx-1.7.7

The source now needs to be configured for the current system architecture and built with
the corresponding compiler. The following listing explains all the steps that need to be
taken to configure, build and install the modified nginx server:

./configure --with-http_ssl_module --add-module=../nginx-rtmp-module-master

make

sudo make install

3.2 Client Side

This section provides the preparations that need to be done to make use of the
subcomponents on the client side of the final prototype of T4.5.

3.2.1 Prefetch Proxy

To make use of the Prefetch Proxy the mobile Android Device has to be put into developer
mode. Since SIMPLI-CITY partners agreed on making use of the LG Nexus 4, the
following list explains how to enable the developer mode on this very device. The steps on
other Android phones should generally be similar.

 The device settings menu needs to be opened. This can be done by pressing the

Menu button while being on the home screen and tapping the “System settings”

icon.

 The option “About phone” needs to be tapped.

 At the “About” screen, the “Build number” needs to be tapped seven times.

At this point the device is in Developer Mode and able to install the Prefetch Proxy.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
18 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

4 Installation (Deployment)

This section provides guidelines on how to install and deploy the final prototype of the
SIMPLI-CITY Media Data Streams and Data Prefetching component on a server as well as
clients (i.e., an Android device or an Android device simulator). These different target
systems are separately described in the following sections.

4.1 Server Side

The server side handles all the packages and subcomponents that are not visible to the
user, but offer the functionality the clients need to make use of the Media Data Streams
and Data Prefetching prototype. The following instructions are made for Debian Linux and
Debian based distributions, i.e., Ubuntu or Linux Mint. Installation steps may differ when
using other distributions that use other package managers.

4.1.1 Media Data Streaming

The prototype is delivered alongside a demo webserver, which is part of the archive
provided with this deliverable. Before the server is started, the $GOPATH environment
variable needs to be set within a terminal window, this includes two steps:

cd <projectpath>/src

export GOPATH=`pwd`

Afterwards the missing Go packages need to be installed. This is automatically done by
the golang toolset:

go get

After installing all the missing packages the prototype is ready to run. The compilation and
initiation of the prototype is done via the command:

go run main.go

Now the webserver is running on port 3000 of the local machine, so it is accessible via a
web browser. The URL to access the server is “http://localhost:3000”.

4.1.2 nginx

By default nginx is installed to /usr/local/nginx, so to start the server following

command needs to be run:

sudo /usr/local/nginx/sbin/nginx

To make sure the nginx service is running, the following command can be executed:

curl http://localhost/

In case curl is not installed, the URL (http://localhost/) can be opened inside a web

browser.

The nginx configuration file needs to be modified in order to enable the Media Data
Streams and Data Prefetching component is able to stream the media. The configuration
file is located by default at /usr/local/nginx/conf/nginx.conf. The lines shown in

Listing 1 need to be added at the end of this file.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
19 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

Listing 1: Lines to be Added to Configuration File of nginx

This configuration was used in the development progress. After saving the configuration
file, the nginx service needs to be restarted for the changes to take effect.

sudo /usr/local/nginx/sbin/nginx -s stop

sudo /usr/local/nginx/sbin/nginx

4.2 Client Side

The Prefetch Proxy is part of D6.3.2 (SIMPLI-CITY Mobile Application Runtime
Environment Prototype II) and will be installed through following the instructions found in
public deliverable D6.3.2.

#user nobody;
worker_processes 4;

#error_log logs/error.log;
#error_log logs/error.log notice;
error_log logs/error.log info;

#pid logs/nginx.pid;

events {
 worker_connections 1024;
}

rtmp {
 server {
 listen 1935;
 ping 20;
 chunk_size 4096;
 publish_time_fix off;
 play_time_fix off;

 application simcity {
 live on;
 }
 }
}

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
20 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

5 Execution and Usage of the Software

This section describes how to use the different subcomponents of the prototype after they
have been installed on their respective devices. All data examples used in this deliverable
are not part of the deliverable package due to license reasons.

5.1 Analysis and Transcoding

The Analysis and Transcoding components are independently working packages, which
can be used by the means of the Go programming language. Since they are not part of the
execution of the prototype, these packages will not be described any further.

5.2 Streaming REST API

This component provides a REST API as the main communication method for the Apps of
the Personal Mobility Assistant. This API provides simple stream control methods to get a
list of available streams, to start and stop a stream and to change the bandwidth available
on the device.

5.2.1 getStreamList

The getStreamList function returns the list of all songs that are instantly available for
streaming. The listing below shows a sample response, which contains a list of three
songs, identified by the ID field and with the artist and title names as additional fields.
These fields may contain spaces, even though the example in Listing 2 does not make use
of it.

Listing 2: JSON Response of the Stream List

5.2.2 setBandwidth/:id/:kbps

This function takes an ID as a parameter to identify the stream to change the bandwidth
for and the current bandwidth. This will immediately take effect on the stream provided to
the mobile device. This method returns “ACK” if the request is valid and the corresponding
error message if the request is invalid.

[
 {
 "Id": "840b6e2193cd7fcd5a1057e928d38c95",
 "Artist": "Weezer",
 "Title": "HashPipe"
 },
 {
 "Id": "e50775d37e96bc727f2d1ea928928aa8",
 "Artist": "SilversunPickups",
 "Title": "LazyEye"
 },
 {
 "Id": "e8f94e354e8d8d292e6ae2e24277562a",
 "Artist": "ArcticMonkeys",
 "Title": "Brianstorm"
 }
]

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
21 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

5.2.3 play/:id and stop/:id

To start a stream, the app needs to get an ID from the getStreamList method; this id is
then used by the play method to generate a media-file/PMA-ID correlation and returns this
combination as a unique ID, which is used to control a specific stream. The controlling of a
specific stream is done by the play- and the stop-method of this API. This method returns
“ACK” if the request is valid and the corresponding error message if the request is invalid.

5.3 Streaming Website

The Streaming Website is only for showcase purposes and was created for the second
review meeting in December, 2014. It shows the use of the getStreamList method in a
readable format and the possibility to start a stream with the play method. After clicking on
one of the links the browser is redirected to a stream-view page which includes a slider to
change the bandwidth of the current stream. This website is part of the package included
within this deliverable.

The following figures were taken using Google Chrome (Version 41.0) on Ubuntu Linux
14.10 – the results may vary depending on the Browser and Operating System used.

Figure 3: Demo Website – List of Available Media

As seen in Figure 3 the website shows a list of available songs. When clicked on a song a
new page will open similar to the one depicted in Figure 4.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
22 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

Figure 4: Demo Website – Running Stream

The Page depicted in Figure 4 offers the means to control the running stream by adjusting
the virtually available bandwidth to demonstrate the bandwidth adaptation of the streaming
component.

5.4 Prefetch Proxy

The Prefetch Proxy does not provide a single executable App, which is going to be used
for execution. This functionality is transparently provided by a service that is running in the
background of the PMA. It is automatically used by SIMPLI-CITY Apps that are running
inside the PMA. Therefore, this section does not provide a particular use-case or example
for usage of the Prefetch Proxy.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
23 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

6 Summary

The final Media Data Streams and Data Prefetching prototype offers capabilities to stream
media to the SIMPLI-CITY PMA and to store prefetched data on the PMA.

The Media Data Streams component automatically converts media files into a common
output format and can start RTMP streaming upon invocation. This format is supported by
any kind of clients, which includes the PMA. The PMA includes the functionality of the
Media Data Streams component and wraps it around the Media Playback API. This API
will be usable within native source code that is used by app developers.

The Data Prefetching algorithm provides the logic to decide at what points of time which
particular data items should be prefetched. It is especially aiming at mobile users and road
users, which are subject to fluctuating mobile networks. Different prefetching strategies are
covered; the actual selection of a strategy is based on the importance of the data, its time-
criticality, and the data access pattern. Thanks to SIMPLI-CITY’s loosely coupled
architecture, the prefetching algorithm may be replaced by other algorithms which may be
more sufficient in different environments. Also, it is possible to extend the current
algorithm.

In addition to what has been discussed in this deliverable, the Media Playback API and the
Data Prefetching API will also provide a set of functionalities to be able to manage the
streams (e.g. buffering, changing bitrate, controlling of streams) on the PMA. All these
functionalities will be implemented in a manner that allows PMA application developers to
understand and use them in a very easy way. As these APIs have a tight relationship with
the app development, they will be delivered in the upcoming deliverables D7.2 and D8.2.

SIMPLI-CITY WP4 Public D4.5.2: Media Data Streams and Data Prefetching Prototype II

D4.5.2_Media_Data_Streams_and_Data_Prefetchin
g_Prototype_II_v1.0_For_Approval.docx

Document
Version: 1.0

Date:
2015-04-21

Status: For Approval
Page:
24 / 24

http://www.simpli-city.eu/ Copyright © SIMPLI-CITY Project Consortium. All Rights Reserved. Grant Agreement No.: 318201

References

[HSH+14] W. Hummer, S. Schulte, P. Hoenisch, and S. Dustdar, “Context-Aware Data
Prefetching in Mobile Service Environments,” in The 4th IEEE International Conference on
Big Data and Cloud Computing (BDCloud 2014), Sydney, Australia, 2014, pp. 214-221.

